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Abstract. Cuepatlahto and Lascaux are two systems for the formalization and
transcription of musical score. Developed independently, both systems imple-
ment a set of modules, classes and procedures written in the Python program-
ming language as higher level wrappers around the LilyPond open source sys-
tem for automated music engraving. In this article we discuss the background
and motivations to our work, introduce the components and workflow of both
systems, and provide examples of both systems operating on numeric “seed”
input together with the musical score produced as output.

1. Introduction
Cuepatlahto and Lascaux, the work of the first and second authors, respectively, address
several problems in music composition with which we have each been confronted. This
list of shared concerns includes:

1. The difficulty involved in transcribing larger scale and highly parameterized ges-
tures and textures into traditional western notation.

2. The general inflexibility of commercial1 music notation software packages.
3. The relative inability of objects on the printed page in conventional score to point

to each other — or, indeed, to other objects or ideas outside the printed page —
in ways rich enough to help capture, model and develop long-range, nonlocal
relationships throughout our scores.

In picking the phrase formalized score control to capture our solutions to these problems,
we hope to highlight our want to embody important elements of musical score symbol-
ically such that the full power of modern programming languages and tools in mathe-
matics can be brought to bear on all parts of the compositional process.2 We developed
Cuepatlahto and Lascaux independently over the course of several years, having each
first tried out and then discarded a number of different technologies. We have reached
remarkably similar conclusions as to the good fit of dynamic and interpreted languages in
general — and of Python in particular — for the formalization part of this problem, and
of the unique status of LilyPond3 as possibly the only notation package — open source,
commercial or otherwise — able to offer full control of all parts of the musical score by
means of a publicly documented clear text input format able to be driven by a higher level
language such as Python.

In the sections that follow, the first author describes his work on Cuepatlahto and the
second author describes his work on Lascaux; we offer shared conclusions at the end.

1Primarily Finale and Sibelius.
2The term is also an acknowledgment of the important role played by Xenakis and his music.
3See [Nienhuys and Nieuwenhuizen, 2003].



2. Cuepatlahto

Cuepatlahto4 is the convergence of several tools and solutions to problems in music com-
position that the first author has encounter over the years. It is a set of modules for the
formalization and transcription of musical score written in the Python programming lan-
guage.5

2.1. Background and motivations

How do we represent a musical idea? How do we take a vividly experienced sound, its
motions, densities, displacements, timbres, etc., and notate it on paper within the confines
of traditional music notation? In my very early exercises in music composition I found
myself in conflict between the act of creating music and that of analyzing its possibilities
for representation. This was particularly true for timing information, which I found to
be particularly important. I had to stop to think about the relative timings while trying
to produce them “freely”. At the time I found analyzing sound recordings to be a good
solution to my problem. Looking at the spectrogram and observing the position of energy
bursts along the gridded timeline allowed me to make very precise measurements and thus
very precise transcriptions. This orthogonalization between the process of creation and
that of notation became an important part of my musical thinking.

Rotaciones (for unaccompanied viola) from 1999 was conceived both as a sequence and
a set of operations to act on the sequence. The piece was a study on what Julio Estrada
called topological variations; see [Estrada, 2002]. Estrada’s variations were real trans-
formations of solid wires representing multiparametric sequences. At the time, it became
clear to me that the full potential of this kind of thinking could only come through its for-
malization. I thus began writing a collection of functions in the C programming language
for the formal study and transformation of musical materials.

2.2. Components of the system

From a general point of view, Cuepatlahto can be described as a high-level signal process-
ing system with a couple of input and output interfaces. I will first describe the core of the
system and then look at its input and output interfaces. As it stands today, Cuepatlahto
comprises four main packages: Digitizer, Lily, MusicObjects and NDarray.
The first two are input and output interfaces, respectively. MusicObjects is the main
data structure / representation package, and NDarray implements analysis and process-
ing functions that operate on NumPy’s numeric arrays.6

Cuepatlahto implements two types of data representation:

1. A numerical representation in the form of n-dimensional arrays using NumPy.
2. A hierarchical tree-like structure that parallels that of a musical score.

In the first form, the musical data is represented as an array of numbers. The “music”
can be anything from a single sequence representing pitch, durations or any other kind of
sampled data ...

p = [p2, p2, p3, . . .]

... to a multidimensional sequence of parallel parameters such as the position of a body in
3-space.

SPACE =

 x = [x1, x2, x3, . . .]
y = [y1, y2, y3, . . .]
z = [z1, z2, z3, . . .]


4Cuepatlahto means interpreter in Nahuatl.
5http://www.python.org
6http://numpy.scipy.org



In Cuepatlahto, each dimension of a multidimensional array models some musical param-
eter defined a priori, for example pitch, loudness and distortion, or p, l, d, respectively.

M =

 p = [p1, p2, p3, . . .]
l = [l1, l2, l3, . . .]
d = [d1, d2, d3, . . .]


This type of representation facilitates the parallel processing of large amounts of data.
Arrays can be operated on as matrices using common linear algebra operations. For ex-
ample, to make pitch and loudness a combination of each other, say p′ = 0.75p + 0.25l,
and l′ = 0.25p+0.75l, we can simply multiply our music matrix M with a transformation
matrix T ...

T =

 0.75 0.25 0
0.25 0.75 0
0 0 1


... by typing T*M at the Python command prompt. There are a couple of problems with
this representation though. First, one is forced to use numbers only in order to operate
on the arrays. This makes it difficult to encode any kind of information that might better
be represented as a string. A second problem is that all the dimensions in the array must
have the same number of elements. If one dimension must grow or shrink, so must the
others.

The second representation method is a hierarchy of nested musical objects akin to the
structure of traditional music score. The music classes composing the hierarchy are:
Score, Section, Instrument, Staff, Voice, Tuplet, Note and Chord. The
baseclass for all these classes is the MusicObject class. All the other classes inherit
from it. The Note and Chord classes are the only two possible ends (i.e. leaves) of
the hierarchy and they inherit directly from MusicObject. The rest of the classes are

MusicObject

Collection

Chord Note

Tuplet Voice Staff Instrument Section Score

Figure 1: Class hierarcy of MusicObject structure.

Collections because each has a list containing other musical objects. Collection
in turn inherits from MusicObject.

In contrast to the numeric arrays, each of these classes has a variety of attributes of differ-
ent types. The richest class is the Note class, which has four mandatory attributes:

• duration (type float)
• value (e.g. pitch) (type float)
• continuous type (type int)
• head type (type string)



Optional attributes include articulation marks and any number of other tags, both of type
string.

Here’s an example of how a complete three-note score would be created in Cuepatlahto:
n1 = Note(1/2., 0, cont=0, head=’diamond’)
n2 = Note(1/4., 2, cont=1)
n3 = Note(1/4., 3, cont=0)
v = Voice([n1,n2,n3])
st = Staff([v], ’pitch’)
i = Instrument([st],’violin’)
s = Section([i])
score = Score([s], ’Title’)

This type of data representation has some advantages over the first. It is easy to visualize
and organize the musical data. Strings and numbers can live together, allowing for detailed
descriptions. Also, in contrast to numeric array representation, each of these objects can
have a different number of attributes and this number can grow without affecting the other
nodes of the music tree.

2.3. Working with the system
Numbers to be processed in Cuepatlahto can be entered by hand using the computer key-
board. In addition, source data can be extracted from audio recordings through parameter
trackers or read from a digitizing tablet in much the same way as with the UPIC machine;
see [Henning, 1986].

Parameter trackers provide the data in its rawest form as numeric arrays of one or more
dimensions. Currently, Cuepatlahto implements dedicated procedures to handle ampli-
tude envelope extraction, onset detection and the measurement of spectral entropy. The
graphic digitizer interface allows for a richer kind of input. Each point digitized can have
as many attributes as the user requires and be of various data types. However, the inter-
face is typically used much like the UPIC system, with time represented on the horizontal
axis and some time-dependent parameter on the vertical. Used in this fashion, each point
given as input has the following attributes:

1. Vertical position
2. Duration (the horizontal distance between two adjacent points)
3. Point type: a tag that associates a point to a class, e.g. round, triangle, square,

diamond
4. Continuous type: a number defining whether the point is an inflection in a contin-

uous function or not, and what kind (e.g. linear, spline, etc.)
5. Textual tag: a textual description of additional attributes of the point; defaults to

empty
The digitizer interface can return either a numeric array or a Voice object, in which case
one can immediately render the data to a musical score via the lily translator package.

By default, MusicObjects display as lists of attribute : value pairs. For example,
running print on the tiny score given in Section 2.2, yields:

Score: Title
Section: section
Instrument: violin
Staff: pitch
Voice: pitch num: 2

arts:[] cont:0 dt:0.5 head:diamond type:normal val:0
arts:[] cont:1 dt:0.25 head:round type:normal val:2
arts:[] cont:0 dt:0.25 head:round type:normal val:3

However, one of the main purposes of Cuepatlahto is the generation of musical scores.
Thus, the lily module provides the functionality to generate LilyPond input files from



the MusicObject data representation. Given a score score, a LilyPond file can be
written to disk by calling the write() function from the lily module.

2.4. Application example

The following is a short example of a work session. There are four basic steps in the
workflow of a session:

1. Input seed(s) or source material
2. Generalize and / or process seed to generate variations or to develop material
3. Create a piece by scaling and fitting instances and arranging them together
4. Generate output score

Let us define the seed s = [1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 0.5, 0.5]. From this seed
we will derive a collection of derivations s′

i by filtering s so: s′
i[n] = ais[n−1]+bis[n]. In

this particular example, we will use the trigonometric functions sin θ and cos θ as the a and
b coefficients. Specifically, define the set of transformation vectors {r1, r2, r3, . . . , r8},
such that ri = [cos θi, sin θi] and θi = i2π/8. To facilitate transforming the data, let us
then create a two-dimensional array S of the consecutive pairs of numbers in s.

S =

[
1.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 0.5, 0.5
1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 1.0, 0.5, 0.5, 1.0

]
This allows us to then obtain our variations by simply multiplying the matrix S by a
transformation vector, so: s′

i = riS. Applying this operation for each of the vectors ri we
obtain the following results:

s′
1 = [1., 1., 0.5, 0.5, 1., 1., 0.5, 0.5, 1., 0.5, 0.5]

s′
2 = [0.727, 1.080, 0.727, 0.373, 0.727, 1.080, 0.727, 0.373, 1.080, 0.727, 0.373]

s′
3 = [0.454, 0.954, 0.954, 0.454, 0.454, 0.954, 0.954, 0.454, 0.954, 0.954, 0.454]

s′
4 = [0.341, 0.695, 1.048, 0.695, 0.341, 0.695, 1.048, 0.695, 0.695, 1.048, 0.695]

s′
5 = [0.454, 0.454, 0.954, 0.954, 0.454, 0.454, 0.954, 0.954, 0.454, 0.954, 0.954]

s′
6 = [0.727, 0.373, 0.727, 1.080, 0.727, 0.373, 0.727, 1.080, 0.373, 0.727, 1.080]

s′
7 = [1., 0.5, 0.5, 1., 1., 0.5, 0.5, 1., 0.5, 0.5, 1.]

s′
8 = [1.112, 0.759, 0.405, 0.759, 1.112, 0.759, 0.405, 0.759, 0.759, 0.405, 0.759]

Here is the Python code for this transformation:
s = [1, 1, .5, .5, 1, 1, .5, .5, 1, .5, .5, 1]
s = numpy.array(s)
S = ss.ssrec(s, 1, 2)
S_i = ss.all2drot(S, 8)
s_i = S_i[:,:,0]

numpy.array() is an array creation function from the NumPy library. The
ss.ssrec(data, delay, dim) function in the NDarray package creates an (n ·
dim)-dimensional array from the n-dimensional data array given, and is used here to
create the 2D pattern array. The dim parameter defines the number of dimensions
in the output and delay is the displacement for each of the additional dimensions.
ss.all2drot(data, n) is a function that returns a list of all 2π/n equidistant rota-
tions of 2D data. Finally s i = S i[:,:,0] recovers only the first dimension of each
of the 2D data sequences. The s i variable is thus a list of our eight variation sequences.
Now that we have our derived patterns s′

i we will make some music out of them. Let us
use these sequences as rhythmic patterns and assign each to a different instrument. To
do this we will create eight Voices, one per pattern, with each pattern term assigned a
separate Note. In Python we can create both the Notes and the Voices in a single line
like so:

voicelist = [Voice([Note(dt) for dt in pat]) for pat in s_i]



This will return a list of Voices (voicelist) that we can then assign to Staffs,
Instruments and finally to a Score. Before creating the full score, however, we must
process the Voices to conform to the limitations of standard western music notation.
Observe that all note duration values in the western notation system must be of the form

1

2(n)
+

1

2(n+1)
+ . . . +

1

2(n+m)
, for n, m ∈ Z.7

Most of the values in the sequences derived do not have this form. Thus, we must convert
them before attempting to call the score renderer on them. First we quantize all the values
using Voice.quantizeTime(128). This function will make the smallest possible
duration in our score a 128th note. Then we call Voice.pow2dt() to convert all
durations to the form described above. If after quantization, Voice.pow2dt() finds
that a Note’s duration does not conform, then the Note is split and new tied Notes are
generated and inserted into the Voice calling this method.

In addition to these two preparatory methods, we will also call Voice.scaleTime()
to scale the durations down by 1/8 and make all durations less than or equal to an eighth
note. The Python code to perform these three tasks is this:

for voice in voicelist:
voice.scaleTime(1/8.)
voice.quantizeTime(128.)
voice.pow2dt()

Once the durations have been adjusted for score output we create a Section containing
eight Instruments, each containing one Staff, and each Staff containing one
Voice. Again we do this in Python in a single line using list comprehensions.

sec = Section([Instrument([Staff([voicelist[i]],name=’0’)],
name=str(i)) for i in range(len(voicelist))])}

Finally we create a Score with this single section and pass it to the write(score)
method in the lily module for rendering as a LilyPond score.

score = Score([sec], name=’rhythm’)
lily.write(score)

Figure 2 shows the rendered score. Note that each Instrument is rendered on a single-
line staff. This is achieved by assigning the value ’1’ to the name parameter of each
newly created Staff.

3. Lascaux

Lascaux8 extends the Python programming language to an interactive composers’ work-
bench. The project results from the second author’s work formalizing different parameters
of the musical score. In this section, the second author provides the background and mo-
tivation to Lascaux and introduces the components and basic workflow of the system; the
section concludes with a working example.

7Note that this does not refer to the actual (absolute or relative) durations of notes, which may be
altered through the use of tuplets or tempo changes in general. Rather, it refers to the duration traditionally
represented with the graphical object that combines a notehead, zero or more dots, and zero or more flags:

8“It is in this way, under the pretext of saving the original, that the caves of Lascaux have been forbidden
to visitors and an exact replica constructed 500 metres away, so that everyone can see them (you glance
through a peephole at the real grotto and then visit the reconstituted whole). It is possible that the very
memory of the original caves will fade in the mind of future generations, but from now on there is no longer
any difference ...”; [Baudrillard, 1983].
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Figure 2: Score notation output from Cuepatlahto for the eight rhythmic patterns
generated above; the first is the original seed pattern.

3.1. Background and motivation

During the composition of ZEIT (14 players) in 1997 – 98 I became interested in two
different types of transform, the first9 designed to partition and then registrally permute
aggregate chords, and the second to collect the results of a series of successive order op-
erations against some starting set of pitches or durations. I dubbed this second transform
helianthation after the fanciful image of a bright collection of sunflowers turning to follow
the course of the sun across the sky. The transform formalizes as follows.

Let S = S1, ..., Sn denote some seed S equal an ordered collection of sublists S1, ..., Sn;
and let each of the sublists Si ∈ S equal a possibly different number of elements Si =
Si,1, ..., Si,k, with each of the Si,j ∈ Z. Denote by hr

r(S) the order operation h on seed
S that first rotates each of the Si ∈ S one position to the right and then rotates each
of the Si,j in each of the Si one position to the right. And then denote by Hr

r(S) the
composite order operation Hr

r(S) = S, hr
r(S), hr

r(h
r
r(S)), ... which nests and collects the

unique applications of h against S. Further, denote by fH
r
r(S) the flattened form of Hr

r(S).

As an example, we take initial seed S = [[4, 6], [2, 4, 6], [2, 8]] and see that the first ap-
plication of h against S gives hr

r(S) = [[8, 2], [6, 4], [6, 2, 4]], that the second application
of h gives hr

r(h
r
r(S)) = [[4, 6, 2], [2, 8], [4, 6]], and so on; after six such applications of h

against S we get back the initial seed S as a result. These successive applications of h

then give Hr
r(S) = [[4, 6], [2, 4, 6], [2, 8]], [[8, 2], [6, 4], [6, 2, 4]], [[4, 6, 2], [2, 8], [4, 6]], ...];

flattening Hr
r(S) we get fH

r
r(S) = [4, 6, 2, 4, 6, 2, 8, 8, 2, 6, 4, 6, 2, 4, 4, 6, 2, 2, 8, 4, 6,

6, 4, 2, 4, 6, 8, 2, 2, 8, 4, 6, 6, 2, 4, 4, 6, 2, 8, 2, 6, 4].

I found the effect of this particular transform to be something like the constant recur-
rence of fixed elements shimmering in and out of relative order. The feasibility of work-
ing out fully helianthated examples by hand depends10 crucially on the relative lengths
of the sublists of S. So my strategy during ZEIT was to work out the different he-
lianthations of both the pitch and rhythmic material with a one-off program written

9Later labelled constellation.
10In general, len(hr

r(S)) = LCM(len(S1), ...,len(Sn),len(S)) and len(fHr
r(S)) =

len(hr
r(S)) ×

∑
i len(Si) for Si ∈ S, at least where the Si,j are unique in S; symmetries between

the Si ∈ S reduce the length of fHr
r(S).



in C, designed to assist both score formalization and transcription. The code formal-
ized fH

r
r(S) easily but gave mixed results with regards to transcription. The chosen

transcription strategy was to write type 1 MIDI files to disk for import to Finale; see
[The International MIDI Association, 1988]. The pitch material transcribed successfully
while anything beyond the most basic rhythms imported into Finale only poorly.11

At the conclusion of ZEIT, I was struck by the compositional usefulness of fH
r
r(S) and

related transforms, the relative ease of pitch transcription, the difficulty of rhythmic tran-
scription, the poverty of MIDI as a medium for encoded notation generally, and the need
for a different type of system to model higher level musical constructs. These conclusions
were the motivators for my work on what later become Lascaux.12

3.2. Components of the system
Lascaux currently comprises 22 modules, 16 core classes, and open set of discrete trans-
forms. Of these 16 classes, seven are concrete typesetting classes equipped with methods
to generate exact LilyPond input for notes, rests, skips, tuplets, voices, staves and com-
plete scores. These seven concrete typesetting classes are available to the user at runtime
and inherit from a further five abstract13 typesetting classes. The abstract typesetting
classes are shielded from the user completely and not available at runtime. These 12
typesetting classes together participate in a typesetting class hierarchy, from which four
remaining utility14 classes stand apart.

LilyObject

Leaf Container

Event

Skip Note Rest

Tuplet Expression

Voice Staff Score

Context

Figure 3: Lascaux typesetting hierarchy; arrows show inheritance.

3.3. Working with the system
Lascaux reads input from file and also accepts commands typed directly at the interactive
interpreter. To work with the system interactively, type lascaux at the prompt.

11MIDI files model rhythm as a series of time deltas between consecutive events only, which the import
filters to most of the commercial notation programs quantize to usually only binary divisions of some
unit time. This makes nonbinary tuplet divisions problematic and makes nested tuplet divisions all but
impossible. Beams, ties and the other aspects of rhythmic notation not directly associated with time deltas
do not encode into MIDI files at all; see [Hewlett et al., 1997].

12Almost eight years separate this work on ZEIT from the implementation of Lascaux described in the
next section. The time between first saw the replacement of C with Mathematica and then a move away
from MIDI files in favor of the clear text .pmx input files to Leland Smith’s SCORE. The first two verses
of POÈME RÉCURSIF (64 pieces of percussion) in 2003 / 2005 were the product of that intervening
implementation of the system.

13Abstract here means only that certain classes are, by convention, not meant for user instantiation and
do not load into the global namespace on start-up. Python has no abstract modifier.

14Rational, Duration, Pitch and Accidental.



$ lascaux
LASCAUX 1.2 ...
Python 2.5 (r25:51918, Sep 19 2006, 08:49:13)
[GCC 4.0.1 (Apple Computer, Inc. build 5341)] on darwin
Type "help", "copyright" ... for more information.
>>>

Lascaux writes a greeting to screen and then invokes the Python interpreter. The global
namespace contains Lascaux modules available to the user.

>>> dir()
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’,
’duration’, ’expression’, ’lily’, ’music’, ’notate’,
’note’, ’pitch’, ’rest’, ’score’, ’skeleton’, ’skip’,
’staff’, ’templates’, ’transforms’, ’tuplet’, ’voice’]

Concrete typesetting classes can be initialized one at a time by hand; here we specify a
note with pitch 13 and duration equal to 3/16 of a whole note; Lascaux pitches follow the
convention in [Morris, 1987] with ..., B\3, C\4, C]4, ... equal to ...,−1, 0, 1, ....

>>> n = note.Note(13, 3, 16,
right = [r’\marcato’, r’\staccato’])

All classes override Python’s default repr method and publish approximate LilyPond
input to the interpreter; note that LilyPond pitches follow the convention that pitches
..., B\3, C\4, C]4, ... equal to ...,b,c’,cs’, ....

>>> n
cs’’8.

Exact LilyPond input is available at any time via the lily property string; all concrete
typesetting classes implement this string. Lascaux makes available a large number of
given and derived attributes regarding the duration of notes, rests, tuplets and other du-
rated objects in the score, while making as few assumptions as possible about the graphic
appearance of these objects, offering left, right, before and after attribute lists
for the lexical positioning of raw LilyPond formatting directives against arbitrary system
objects instead.

>>> print(n.lily)
cs’’8. \marcato \staccato
>>> show(n)
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The show() command writes LilyPond input for a complete score to file, calls LilyPond,
and pushes the resulting .pdf to screen. Higher level procedures in the music module
are available to create more objects at once; here we apply the ratio 1 : 1 : 1 : 4 against a
duration equal to 6/32 of a whole note.

>>> t = music.divide([1, 1, 1, 4], 6, 32)
>>> t
(7:6, c’32, c’32, c’32, c’8)
>>> show(t)

 

!

7:6

!" ! !
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Interactive sessions in Lascaux iterate through a straightforward two-part cycle — create
some objects, show() the result, change the objects, show() the result again, etc.,
building up ever larger collections of objects with ever more attributes and interrelations.
Lascaux saves the .pdf of each bit of notation to disk, which makes it possible to review
all intermediate products leading up to a complex expression, over the course of days or
weeks of experimentation. Complete expressions usually then save to file for reimport to
the interpreter later.

3.4. Application example

In the example below, from LIDERCFENY (fl, vln, pf) in 2007, we build up a rhythmic
structure with seven strata, beginning with the Lascaux implementation of fH

r
r(S), de-

fined above.
t = helianthate([[4, 6], [2, 4, 6], [2, 8]])
s = helianthate([[0, -1], [0, 0, -1], [0, 0, 1]])

t and s are now 42- and 48-element lists resulting from the helianthation of two different
starting seeds. increase(t, s) cyclically adds elements in s to elements in t.

>>> t
[4, 6, 2, 4, 6, 2, 8, 8, 2, 6, 4, 6, 2, 4, 4, 6, 2, 2,
8, 4, 6, 6, 4, 2, 4, 6, 8, 2, 2, 8, 4, 6, 6, 2, 4, 4,
6, 2, 8, 2, 6, 4]

>>> s
[0, -1, 0, 0, -1, 0, 0, 1, 1, 0, 0, -1, 0, -1, 0, 0, 0,
-1, 0, 0, 1, 0, 0, -1, -1, 0, 0, 0, -1, 0, 0, 1, 1, 0,
0, 0, -1, -1, 0, 0, 0, -1, 0, 0, 1, 0, -1, 0]

>>> increase(t, s)
>>> t
[4, 5, 2, 4, 5, 2, 8, 9, 3, 6, 4, 5, 2, 3, 4, 6, 2, 1,
8, 4, 7, 6, 4, 1, 3, 6, 8, 2, 1, 8, 4, 7, 7, 2, 4, 4,
5, 1, 8, 2, 6, 3]

The elements in t now give the top-level durations of 42 consecutive measures in integer
numbers of sixteenth notes — 2/8, 5/16, 1/8, .... The next series of assignments subdi-
vide the top-level measure durations in t and determine the durations of spanning beam
patterns.15

cut = helianthate([[4, 8, 8], [8, 8], [4, 8, 8]])
j = untie(intaglio(t, cut, t = 4))
g = flatten(j)
h = [2 * x for x in g]
beam = [len(x) for x in resegment(j, [4, 8, 18], max = 3)]

cut = helianthate([[0], [0, 0, 1]])
m1 = [divide(d, weight(d), 16) for d in plough(j, cut)]

We assign to m1 the first of our seven rhythmic strata. Subsequent transformations and

15The functions untie(), intaglio(), resegment(), plough() and stellate() used
through the body of this example are discrete and combinatorial transforms on integers, lists, or lists of
lists, formalized much the way as the definition of fHr

r(S) with which our description of Lascaux opened.
Although a full definition of these and the related transforms in the system is beyond the scope of this
paper, we summarize here that untie() transforms integers such as 5, 9, 10, ... to lists of integers such as
[4, 1], [8, 1], [8, 2], ..., here used to strip ties from certain parts of the score. intaglio(), resegment()
and plough() transform two-dimensional lists in different ways, according to the structural attributes
of other two-dimensional lists, here used derive measure division, beaming and tupletting information
from related but conflicting source material. stellate() accepts a number of different one- and two-
dimensional lists as input and returns nested collections of tuplets as a result. This way of piling discrete
transforms one on top of another came after a period of working to map the extensive set of physical pro-
portions in a complex natural object — the magnified wing of a dragonfly — to rhythmic proportions in the
score; the quantization involved in this work largely followed [Nauert, 1994].



assignments work out the remaining six rhythmic strata; each of the tightly related input
seeds worked out here derive from many dozens of iterations at the Lascaux interpreter.

cut = [[2, 3, -4], [2, -4], [2, 3, -3, 4]]
m2 = stellate(g, [[0]], cut, 16, beam)
stack = [[2, 4, 5, 5], [2, 4], [0, 2, 3]]

cut = [[4, 5, 6, -7], [5, -7], [6, 7, 8, -8]]
m3 = stellate(g, stack, cut, 16, beam)

cut = [[4, 6, 8], [4, -8], [4, 6, -6, 8]]
m4 = stellate(h, [[0]], cut, 32, beam)

stack = [[0, 2, 3], [2, 4], [2, 4, 5, 5]]
cut = [[2, -2, 3, -4], [3, -4], [3, -4, 4, -6]]
m5 = stellate(h, stack, cut, 32, beam)

stack = [[2, 4, 5, 5], [2, 4], [0, 2, 3]]
cut = [[4, 5, 6, -6], [5, -6], [6, 6, 8, -8]]
m6 = stellate(h, stack, cut, 32, beam)

stack = [[2, 4, 5], [2, 4, 4, 5], [0, 2, 3]]
cut = [[2, 3, 4, -4], [2, -3], [4, 4, 6, -6]]
m7 = stellate(h, stack, cut, 32, beam)

Rendering the rhythmic strata m1, m2, m3, m4, m5, m6, m7 as separate voices gives a
42-measure score in seven staves. The complete score comprises some 2055 notes and
rests. In figure 4 we excerpt measures 36 – 38, and the first part of measure 39.
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Figure 4: Output from Lascaux, excerpted from the 2055-note score encoded
above.

4. Conclusions and future work

In the preceding sections we have presented our work on Cuepatlahto and Lascaux, sys-
tems we developed independently and continue to develop to formalize control of the
musical score and help in the transcription of complex and composite musical material.
Both systems implement higher level wrappers written in Python to drive the LilyPond
open source system for automated music engraving; both systems implement a core class
hierarchy together with modules and procedures for specialized work. Each system also
capitalizes on different design strengths.



Cuepatlahto admits numeric input both by hand and from file as well as from the output
of a digitizing tablet after the fashion of the UPIC machine of Xenakis; this specialized
graphic input integrates Cuepatlahto tightly with the first author’s work in geometric in-
put and transforms as a driver of the compositional process. To translate graphic and
geometric elements outside the score to concrete elements of notation within the score,
Cuepatlahto implements strong support for the quantization of floating point or real num-
bers and the transformation of those values through the matrix operations of linear alge-
bra.

Lascaux rules out quantization and real-valued modeling in favor of discrete and combi-
natorial transforms over the integers. This way of working follows the second author’s
rejection of overt mapping of visual or geometric information from the external world into
the score in favor of the iterative and layered construction of complexes of information
designed to rival our experience of the visual world.

Though neither system has a conventional graphic user interface, it seems unlikely that
we will develop one for either system. We leave open the possible unification of both
systems and also the eventual publication of one or both systems on the public Internet.
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